在幾何學中,三角柱是一種柱體底面三角形。正三角柱是半正多面體均勻多面體的一種。

正三角柱
三角柱
類別柱體
柱狀均勻多面體
對偶多面體雙三角錐在維基數據編輯
識別
名稱正三角柱
參考索引U76(a)
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
trip在維基數據編輯
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node_1 2 node_1 3 node 
施萊夫利符號t{2,3}
{3}×{}在維基數據編輯
威佐夫符號
英語Wythoff symbol
2 3 | 2
康威表示法P3在維基數據編輯
性質
5
9
頂點6
歐拉特徵數F=5, E=9, V=6 (χ=2)
組成與佈局
面的種類2個三角形
3個正方形
面的佈局
英語Face configuration
3{4}+2{3}
頂點圖4.4.3
對稱性
對稱群D3h, [3,2], (*322), order 12
旋轉對稱群
英語Rotation_groups
D3, [3,2]+, (322), order 6
特性
圖像
立體圖
4.4.3
頂點圖

雙三角錐
對偶多面體

展開圖

三角柱是一種五面體,且有一組平行,即兩個面互相平行,而其他三個表面的法線在同一平面上(不一定是平行的面)。 這三個面可以是平行四邊形。所有平行於底面的橫截面都是相同的三角形。

由於三角柱也可以視為三面體截去2個頂點,故又稱截角三面體,另外,因為正三角柱具有對稱性,且由2種正多邊形組成,因此有人稱正三角柱為半正五面體

一般三角柱有5個面、9個邊和6個頂點。

相關多面體與鑲嵌

編輯

三角柱可以由三角形二面體的對偶三面形透過截角變換構造而來,因此與三角形二面體具有相同的對稱性,其可以衍生出一些相關的多面體:

半正三角形二面體球面多面體
對稱群英語List of spherical symmetry groups[3,2], (*322) [3,2]+, (322)
                                               
             
{3,2}
t{3,2}
r{3,2}
2t{3,2}=t{2,3} 2r{3,2}={2,3} rr{3,2} tr{3,2} sr{3,2}
半正對偶
                                               
               
V32 V62 V32 V4.4.3 V23 V4.4.3 V4.4.6 V3.3.3.3
正多邊形柱體系列
對稱群英語List of spherical symmetry groups 3 4 5 6 7 8 9 10 11 12
[2n,2]
[n,2]
[2n,2+]
           
     
     
           
     
     
           
     
     
           
     
     
           
     
     
圖像    
 
 
   
 
 
   
 
 
       
球面多面體
圖像    
 
   
 
   
 
 
 
柱體形式半正鑲嵌系列:
球面鑲嵌 柱體 歐式鑲嵌
仿緊空間
雙曲鑲嵌
非緊空間
 
t{2,1}
   
 
t{2,2}
     
 
t{3,2}
     
 
{4,2}
     
 
t{5,2}
     
 
t{6,2}
     
 
t{7,2}
     
 
t{8,2}
     
...


 
t{2,∞}
     
 
t{2,iπ/λ}
     
截角多面體和鑲嵌系列:3.2n.2n
對稱性
*n32
[n,3]
球面 歐氏鑲嵌 緊湊型雙曲鑲嵌 仿緊型鑲嵌 非緊型鑲嵌
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
 
[iπ/λ,3]
 
截角頂點佈局  
3.4.4
 
3.6.6
 
3.8.8
 
3.10.10
 
3.12.12
 
3.14.14
 
3.16.16
 
3.∞.∞
 
3.∞.∞
考克斯特紀號英語Coxeter-Dynkin diagram
施萊夫利符號
     
t{2,3}
     
t{3,3}
     
t{4,3}
     
t{5,3}
     
t{6,3}
     
t{7,3}
     
t{8,3}
     
t{∞,3}
     
t{∞,3}
半正對偶圖
三角化
頂點佈局
 
V3.4.4
 
V3.6.6
 
V3.8.8
 
V3.10.10
 
V3.12.12
 
V3.14.14
 
V3.16.16
 
V3.∞.∞
V3.∞.∞
考克斯特紀號                                                      
半正小斜方截半家族:3.4.n.4
對稱群
*n32
[n,3]
球面鑲嵌 歐氏鑲嵌 緊湊型雙曲鑲嵌 仿緊型鑲嵌 非緊型鑲嵌
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
 
[iπ/λ,3]
 
小斜方截半
頂點佈局
 
3.4.2.4
 
3.4.3.4
 
3.4.4.4
 
3.4.5.4
 
3.4.6.4
 
3.4.7.4
 
3.4.8.4
 
3.4.∞.4
 
3.4.∞.4
考克斯特符號英語Coxeter-Dynkin digram
施萊夫利符號
     
rr{2,3}
     
rr{3,3}
     
rr{4,3}
     
rr{5,3}
     
rr{6,3}
     
rr{7,3}
     
rr{8,3}
     
rr{∞,3}
     
rr{iπ/λ,3}
鳶形
頂點佈局
 
V3.4.2.4
 
V3.4.3.4
 
V3.4.4.4
 
V3.4.5.4
 
V3.4.6.4
 
V3.4.7.4
 
V3.4.8.4
 
V3.4.∞.4

V3.4.∞.4
考克斯特符號英語Coxeter-Dynkin digram                                                      

參見

編輯