1,5-环辛二烯
1,5-环辛二烯是一种有机化合物,化学式为C8H12,通常可以简写成COD。这种二烯烃是制备其他有机物的重要前体,并在金属有机化学用作配体。[2][3]
1,5-环辛二烯 | |
---|---|
IUPAC名 Cycloocta-1,5-diene[1] | |
识别 | |
CAS号 | 111-78-4 |
ChemSpider | 74815 |
SMILES |
|
InChI |
|
InChIKey | VYXHVRARDIDEHS-QGTKBVGQBM |
EC编号 | 203-907-1 |
性质 | |
化学式 | C8H12 |
摩尔质量 | 108.18 g·mol−1 |
外观 | 澄清无色液体 |
密度 | 0.882 g cm−3(液态) |
熔点 | -69.5 °C(204 K) |
沸点 | 151 °C(424 K) |
溶解性(水) | - |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
合成
编辑1,5-环辛二烯可由1,3-丁二烯在镍催化剂作用下二聚制得,同时得到的副产物还有乙烯基环己烯。2005年时全球大约生产了10,000吨1,5-环辛二烯。[4]
有机反应
编辑1,5-环辛二烯与乙硼烷二甲基硫醚加合物(相当于甲硼烷)反应产生9-硼二环[3.3.1]壬烷,[5] 后者简称9-BBN,是有机化学中用于硼氢化反应的试剂:
1,5-环辛二烯与二氯化硫或类似试剂加成得到2,6-二氯代-9-硫代双环[3.3.1]壬烷:[6]
金属配合物
编辑1,5-环辛二烯可以与低价金属通过碳碳双键形成典型的不饱和烃配合物。配合物Ni(cod)2是制备多种Ni(0)和Ni(II)配合物的前体。金属环辛二烯配合物很具有吸引力,因为它们足够稳定可以被分离出来,稳定性通常超过类似的乙烯配合物。环辛二烯配合物的稳定性是螯合效应造成的。环辛二烯配体很容易被其他配体取代,例如膦。
Ni(COD)2可以在环辛二烯配体存在条件下,用三乙基铝还原无水二(乙酰丙酮)合镍制得[8]:
- 1/3 [Ni(C5H7O2)2]3 + 2 COD + 2 Al(C2H5)3 → Ni(COD)2 + 2 Al(C2H5)2(C5H7O2) + C2H4 + C2H6
类似的Pt(COD)2需要用迂回的路线制备,反应中需使用环辛四烯基二锂[9]:
- Li2C8H8 + PtCl2(COD) + 3 C7H10 → [Pt(C7H10)3] + 2 LiCl + C8H8 + C8H12
- Pt(C7H10)3 + 2 COD → Pt(COD)2 + 3 C7H10
目前已有大量关于环辛二烯配合物的研究报道,其中许多发表在无机合成(Inorganic Syntheses)第25、26和28卷上。铂配合物已经使用在许多配合物的合成中:
- Pt(COD)2 + 3 C2H4 → Pt(C2H4)3 + 2 COD
环辛二烯配合物是有用的起始原料,以下反应是一个值得注意的例子:
- Ni(cod)2 + 4 CO(g) Ni(CO)4 + 2 COD
生成物Ni(CO)4有剧毒,因此在反应容器中生成它比直接配制更安全。其他低价金属的环辛二烯配合物包括Mo(COD)(CO)4、[RuCl2(COD)]n和Fe(COD)(CO)3。环辛二烯在Rh(I)和Ir(I)的配位化学中特别重要,例如克拉布特里催化剂和环辛二烯氯化铑二聚体。平面四边形的配合物[M(COD)2]+也是已知的(M = Rh、Ir)。
(E,E)-COD
编辑1,5-环辛二烯张力很大的反-反异构体是一种已知的化合物。(E,E)-COD最早由乔治·怀特塞兹和阿瑟·科普在1969年通过顺式异构体的光异构化制得。[10]另一种合成路线(八元环的双消除反应)由罗尔夫·胡伊斯根于1987年报道。[11](E,E)-COD的构象是扭船式而不是椅式的。这种化合物已被研究用于点击化学的介质。[12]
参考文献
编辑- ^ AC1L1QCE - Compound Summary. PubChem Compound. USA: National Center for Biotechnology Information. Identification and Related Records. 26 March 2005 [14 October 2011]. (原始内容存档于2012-02-25).
- ^ Buehler, C; Pearson, D.Survey of Organic Syntheses. Wiley-Intersciene, New York. 1970.
- ^ Shriver, D; Atkins, P.Inorganic Chemistry. W. H. Freeman and Co., New York. 1999.
- ^ Thomas Schiffer, Georg Oenbrink “Cyclododecatriene, Cyclooctadiene, and 4-Vinylcyclohexene” in Ullmann’s Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim.
- ^ John A. Soderquist and Alvin Negron (1998). "9-Borabicyclo[3.3.1]nonane Dimer". Org. Synth.; Coll. Vol. 9: 95.
- ^ Roger Bishop. "9-Thiabicyclo[3.3.1nonane-2,6-dione]". Org. Synth.; Coll. Vol. 9: 692. Díaz, David Díaz; Converso, Antonella; Sharpless, K. Barry; Finn, M. G. 2,6-Dichloro-9-thiabicyclo[3.3.1]nonane: Multigram Display of Azide and Cyanide Components on a Versatile Scaffold (PDF). Molecules. 2006, 11: 212–218 [2011-10-03]. doi:10.3390/11040212. (原始内容存档 (PDF)于2011-09-27).
- ^ 宋礼成, 王佰全. 金属有机化学原理及应用. 高等教育出版社, 2012. pp 411
- ^ Schunn, R; Ittel, S. Bis(1,5-Cyclooctadiene) Nickel(0). Inorg. Synth. 1990, 28: 94. doi:10.1002/9780470132593.ch25.
- ^ Crascall, L; Spencer, J. Olefin Complexes of Platinum. Inorg. Synth. 1990, 28: 126. doi:10.1002/9780470132593.ch34.
- ^ Irradiation of cis,cis-1,5-cyclooctadiene in the presence of copper(I) chloride George M. Whitesides, Gerald L. Goe, Arthur C. Cope J. Am. Chem. Soc., 1969, 91 (10), pp 2608–2616 doi:10.1021/ja01038a036
- ^ Preparation and conformation of (E,E)-1,5-cyclooctadiene Dieter Boeckh, Rolf Huisgen, Heinrich Noeth J. Am. Chem. Soc., 1987, 109 (4), pp 1248–1249 doi:10.1021/ja00238a046
- ^ (E,E)-1,5-Cyclooctadiene: a small and fast click-chemistry multitalent Henning Stöckmann, André A. Neves, Henry A. Day, Shaun Stairs, Kevin M. Brindle and Finian J. Leeper Chem. Commun., 2011 doi:10.1039/C1CC12161H