空氣動力學
空氣動力學(英語:Aerodynamics),是流體力學與氣體動力學的一個分支,主要研究物體在空氣中運動時所產生的各種力。空氣動力學與氣體動力學常常混用,但後者研究的氣體不局限於空氣。
基本概念
編輯連續性假設
編輯氣體是由微觀上不斷作熱運動並相互碰撞的分子組成的。然而在空氣動力學中,氣體被假定為連續的。這是因為氣體的各種性質如密度、壓力、溫度以及速度在無限小的點上有很好的定義,而且從一點到另一點是連續變化的。氣體的離散性和原子性可以忽略不計,所以從宏觀上來講,氣體是可以被看成具有連續性的物質。當然氣體非常稀薄時,連續性假設不再成立,此時採用統計力學研究是一種更好的選擇。
守恆定律
編輯空氣動力學問題的求解依賴於氣體在三個方面的守恆:
相關術語
編輯不可壓縮以及可壓縮流體常具有以下相關術語所描述的現象產生,例如邊界層、紊流。
附面層流動
編輯附面層(又叫邊界層)是一個非常重要的概念。1904年,德國著名科學家普朗特(Prandtl)首先提出邊界層的概念[1]。它來源於這樣一個基本事實:通常情況下,空氣的粘性或摩擦作用只在靠近物體表面很薄的一個區域內起主要作用,離開這個區域,粘性的影響急劇下降。我們稱這樣一個很小的區域為附面層(邊界層)。
邊界層概念的提出,使得許多以前難以求解的問題變得可以求解,因為我們只需要在很小的一個區域考慮粘性的影響,就可求解納維-斯托克斯方程。而在其他區域,只需要求解勢流或者求解描述無粘性流體運動的歐拉方程。眾所周知,勢流和歐拉方程的求解難度遠遠低於納維-斯托克斯方程。
紊流
編輯紊流在空氣動力學是指流體具有隨機變化的性質,包含低程度動量擴散、高度動量對流、急速壓力以及流體速度變化等。流體不是紊流則為層流。
分支學科
編輯空氣動力問題可以藉由流體速度與音速的大小關係而劃分。當流體速度低於音速時,即為亞音速;當流體速度接近或略超過音速(通常是特徵速度約略等於音速),即為跨音速;超音速是當流動速度大於音速時的情況;極音速是指流體速度較音速還高出許多的狀態。空氣動力學者對於極音速的精準定義持不同意意見,但這個詞通常指的是5馬赫(5倍音速)或更高的速度。[2]
亞音速空氣動力學
編輯當流體流動速度小於音速時,我們稱之為亞音速流動。更進一步,當馬赫數(即流體速度與音速之比)小於 0.3時,氣體的可壓縮性可以忽略不計,可視空氣為不可壓縮流。
20世紀初期,汽車比剛發明不久的飛機速度更快,更早超過時速兩百公里,當時賽車的空氣力學比飛機進步。
跨音速空氣動力學
編輯當流體速度接近或略超過音速(即馬赫數約等於1時),我們稱之為跨音速流動。跨音速流動的典型特徵是激波和膨脹波。在其區域內,流體的各種性質發生劇烈變化,幅度之大,以至於我們可以認為通過激波的流體是不連續的。
跨音速流動要比單純的亞音速和超音速都要複雜。
超音速空氣動力學
編輯超音速空氣動力學研究當流動速度大於音速時的情況。比如計算協和飛機在巡航狀態下的升力就是一個超音速空氣動力學問題。
超音速流動和亞音速流動有著顯著的不同。在亞音速時,壓力波動可以從流場後方傳遞至前方,而在超音速時,壓力波動則無法傳遞至上游。這樣,流體性質的變化便被壓縮在一個極小的範圍內,也就形成了所謂的激波。
激波會將大量的機械能轉化成熱能。伴隨著高粘性(參照雷諾數)流體的可壓縮特性,激波的出現,是亞音速和超音速空氣動力學的基本區別。
其他領域中的空氣動力學
編輯除航空航天外,空氣動力學在其他領域也有非常重要的應用。在包括汽車在內的所有交通工具的設計中,它都是一個很重要的因素。大型建築物涉及到風載荷,市內空氣動力學研究城市的微氣候環境,環境空氣動力學研究大氣環流和飛行對生態系統的影響。還有引擎設計所涉及的熱流和內流也是空氣動力學非常重要的一個方面。
參考文獻
編輯- ^ Notice: Third International Congress of Mathematicians at Heidelberg, August, 1904. The Mathematical Gazette. 1904-07, 3 (46): 49. ISSN 0025-5572. doi:10.1017/s0025557200114536.
- ^ Anderson, John David. A History of Aerodynamics and its Impact on Flying Machines. New York, NY: Cambridge University Press. 1997. ISBN 0-521-45435-2.