伽利略变换建基于人们加减物体速度的直觉。在其核心,伽利略变换假设时间和空间是绝对的。
这项假设在洛伦兹变换中被舍弃,因此就算在相对论性速度下,洛伦兹变换也是成立的;而伽利略变换则是洛伦兹变换的低速近似值。
以下为伽利略变换的数学表达式,其中 和 分别为同一个事件在两个坐标系 和 中的坐标。两个坐标系以相对匀速运行(速度为 ),运行方向为 和 ,原点在时间 时重合。
[4]
[5]
[6]
[7]
-
-
-
-
最后一条方程式意味着时间是不受观测者的相对运动影响的。
利用线性代数的术语来说,这种变换是个错切,是矩阵对向量进行变换的一个过程。当参考系只沿着x轴移动时,伽利略变换只作用于两个分量:
-
虽然在伽利略变换中没有必要用到矩阵表达法,但是用了矩阵就可以和狭义相对论中的变换法进行比较。
伽利略变换可以唯一写成由时空的旋转、平移和匀速运动复合而成的函数。[8]设x为三维空间中的一点,t为一维时间中的一点。时空当中的任何一点可以表达为有序对(x,t)。速度为v的匀速运动表达为 ,其中v在R3内。平移表达为 ,其中a在R3内,b在R内。旋转表达为 ,其中G : R3 → R3为某正交变换。[8]作为一个李群,伽利略变换的维度为10。[8]
这三种变换可更加数学化地表达为伽利略群[9]。首先G为SO(3)中的旋转矩阵,3维内积在G的作用下保持不变,表达为: 设在某t时刻有映射 将空间上的某一点x映射到另一点 上。可证得 构成一个群。
结合律: 为线性映射,线性映射满足结合律。
单位元:
逆映射:
封闭性:
对应的有:
空间平移:
速度变换:
空间旋转:
为不含时伽利略群,加上时间平移 后映射 构成一个完整伽利略群,其依旧满足群的性质。完整伽利略群具有10个生成元,分别为3个空间平移(x,y,z),3个空间转动(对应3个坐标基矢),3个速度,以及一个时间平移。
这里我们只考虑伽利略群的李代数。结果能够轻易延伸到李群。L的李代数由H、Pi、Ci和Lij张成(反对称张量),并能够受交换子的作用,其中
-
-
-
-
-
-
-
-
-
H为时间平移的生成元(哈密顿算符),Pi为平移的生成元(动量算符),Ci为伽利略变换的生成元,而Lij为旋转的生成元(角动量算符)。
现在我们可以对H'、P'i、C'i、L'ij(反对称张量)、M所张成的李群进行中心扩张,使得M与一切都可交换(位于中心,“中心扩张”因此得名):
-
-
-
-
-
-
-
-
-