楔形烷

化合物

楔形烷(英語:Cuneane)是一種飽和的環烷烴,化學式為C8H8。其英文名由拉丁文「cuneus」衍生,意為「楔子」。[1]

楔形烷
IUPAC名
Pentacyclo[3.3.0.0 2,4.03,7.06,8]octane
五環[3.3.0.0 2,4.03,7.06,8]辛烷
識別
CAS號 20656-23-9  checkY
PubChem 140734
547491382R,4R,6R,8R
111943012S,4S,6S,8S
ChemSpider 124127
SMILES
 
  • C12C3C4C3C3C1C2C43
性質
化學式 C8H8
摩爾質量 104.06 g·mol⁻¹
密度 1.578 g/ml
熔點 -22.19°C
沸點 137.895°C
危險性
閃點 7.646°C
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

楔形烷是立方烷價鍵異構體[2]。楔形烷的衍生物中,某些還具有液晶的性質[3]

八甲基楔形烷比較穩定[2]

製備

編輯

楔形烷可以由立方烷經由金屬離子催化的σ遷移反應來製備[4][5],如Ag+與Pd2+均可催化此反應;直接加熱亦可[2]。 該反應是一個放熱反應[6],因為楔形烷的張力能比立方烷小[2]。 同樣的反應也發生在高立方烷(C9H10)以及雙高立方烷(C10H10)上。[7][8]

 
圖一:金屬離子催化的從立方烷到楔形烷的合成

幾何特性

編輯
 
楔形烷的另一個3D模型圖,表現出其楔形結構

在楔形烷中存在着三組化學環境相同的碳原子(下圖中的A,B,C),這也已經被NMR方法所證實[9] 。化學環境相同的氫原子也有三組[2]。楔形烷的碳骨架的分子圖是一個正則圖,並具有三組不等效的頂點。因此它也是數學化學英語Mathematical chemistry中重要的測試不同算法的測試物。[10][11]

 

類似的幾何結構還出現在其他化合物中。如[Ni8(L14Naph)12](BF4)16這一配合物中,陽離子中的8個原子的相對位置就與楔形烷中碳原子的空間位置相同。[12]

參見

編輯

參考資料

編輯
  1. ^ R. Criegee, R. Askani. Octamethylsemibullvalene. Angewandte Chemie International Edition in English. 1968, 7 (7): 537. doi:10.1002/anie.196805371. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 薛價猷. (CH)n多面体烷的合成与结构. 化學通報. 1985, (2): 31-39. 
  3. ^ Bényei, Gyula; Jalsovszky, István; Demus, Dietrich; Prasad, Krishna; Rao, Shankar; Vajda, Anikó; Jákli, Antal; Fodor‐Csorba, Katalin. First liquid crystalline cuneane‐caged derivatives: a structure-property relationship study. Liquid Crystals. 2006, 33 (6): 689–696. doi:10.1080/02678290600722940. 
  4. ^ Michael B. Smith, Jerry March. March’s Advanced Organic Chemistry 5th. John Wiley & Sons, Inc. 2001: 1459. ISBN 0-471-58589-0. 
  5. ^ Philip E. Eaton, Luigi Cassar, Jack Halpern. Silver(I)- and palladium(II)-catalyzed isomerizations of cubane. Synthesis and characterization of cuneane. Journal of the American Chemical Society. 1970, 92 (21): 6366–6368. doi:10.1021/ja00724a061. 
  6. ^ Maria Victoria Roux,Juan Z. Da´valos. Cubane, Cuneane, and Their Carboxylates: A Calorimetric Crystallographic, Calculational, and Conceptual Coinvestigation. J. Org. Chem. 2005. doi:10.1021/jo00408a041. 
  7. ^ Leo A. Paquette and John C. Stowell. Silver ion catalyzed rearrangements of strained .sigma. bonds. Application to the homocubyl and 1,1'-bishomocubyl systems. Journal of the American Chemical Society. 1970, 92 (8): 2584–2586. doi:10.1021/ja00711a082. 
  8. ^ W. G. Dauben, M. G. Buzzolini, C. H. Schallhorn, D. L. Whalen, K. J. Palmer. Thermal and silver ion catalyzed isomerization of the 1,1′-bishomocubane system: preparation of a new C10H10isomer. Tetrahedron Letters. 1970, 11 (10): 787–790. doi:10.1016/S0040-4039(01)97830-X. 
  9. ^ H. Guenther and W. Herrig. Anwendungen der 13C-Resonanz-Spektroskopie, X. 13C,13C-Kopplungskonstanten in Methylencycloalkanen. Chemische Berichte. 1973, 106 (12): 3938–3950. doi:10.1002/cber.19731061217. 
  10. ^ M.I. Trofimov, E.A. Smolenskii. Electronegativity of atoms of ring-containing molecules—NMR spectroscopy data correlations: a description within the framework of topological index approach. Russian Chemical Bulletin. 2000, 49 (3): 402. doi:10.1007/BF02494766. 
  11. ^ M.I. Trofimov, E.A. Smolenskii. Application of the electronegativity indices of organic molecules to tasks of chemical informatics. Russian Chemical Bulletin. 2005, 54 (9): 2235. doi:10.1007/s11172-006-0105-6. 
  12. ^ Stephenson, Andrew; Michael D. Ward. An octanuclear coordination cage with a ‘cuneane’ core—a topological isomer of a cubic cage. Dalton Transactions. 2011, (40). doi:10.1039/C0DT01767A. 

外部連結

編輯
  • 2D and 3D Models of Dodecahedrane and Cuneane Assemblies Link