裂項求和(Telescoping sum)是一個非正式的用語,指一種用來計算級數的技巧:每項可以分拆,令上一項和下一項的某部分互相抵消,剩下頭尾的項需要計算,從而求得級數和。
裂項積(Telescoping product)也是差不多的概念:
1 a ( a + b ) = 1 b ( 1 a − 1 a + b ) {\displaystyle {\frac {1}{a(a+b)}}={\frac {1}{b}}\left({\frac {1}{a}}-{\frac {1}{a+b}}\right)}
a k = 1 a − 1 ( a k + 1 − a k ) {\displaystyle a^{k}={\frac {1}{a-1}}(a^{k+1}-a^{k})}
cos k x = 1 2 sin x 2 [ sin ( k + 1 2 ) x − sin ( k − 1 2 ) x ] {\displaystyle \cos kx={\frac {1}{2\sin {\frac {x}{2}}}}\left[\sin \left(k+{\frac {1}{2}}\right)x-\sin \left(k-{\frac {1}{2}}\right)x\right]}
sin k x = 1 2 sin x 2 [ cos ( k − 1 2 ) x − cos ( k + 1 2 ) x ] {\displaystyle \sin kx={\frac {1}{2\sin {\frac {x}{2}}}}\left[\cos \left(k-{\frac {1}{2}}\right)x-\cos \left(k+{\frac {1}{2}}\right)x\right]} (三角恆等式)[1]
C k n = C k n − 1 + C k − 1 n − 1 {\displaystyle C_{k}^{n}=C_{k}^{n-1}+C_{k-1}^{n-1}} (帕斯卡法則)
1 C k n = n + 1 n + 2 ( 1 C k n + 1 + 1 C k + 1 n + 1 ) {\displaystyle {\frac {1}{C_{k}^{n}}}={\frac {n+1}{n+2}}\left({\frac {1}{C_{k}^{n+1}}}+{\frac {1}{C_{k+1}^{n+1}}}\right)} [2]
若有 a k = b k − b k + 1 {\displaystyle a_{k}=b_{k}-b_{k+1}} ,則 ∑ k = m n a k = b m − b n + 1 {\displaystyle \sum _{k=m}^{n}a_{k}=b_{m}-b_{n+1}}
若有 a k = b k + b k + 1 {\displaystyle a_{k}=b_{k}+b_{k+1}} ,則 ∑ k = m n ( − 1 ) k a k = ( − 1 ) m b m + ( − 1 ) n + 1 b n + 1 {\displaystyle \sum _{k=m}^{n}(-1)^{k}a_{k}=(-1)^{m}b_{m}+(-1)^{n+1}b_{n+1}}
這是錯誤的。將每項重組的方法只適用於獨立的項趨近0。
防止這種錯誤,可以先求首N項的值,然後取N趨近無限的值。