密克定理(英語:Miquel's theorem)是幾何學中關於相交的定理。1838年,密克敘述並證明了數條相關定理。許多有用的定理可由其推出。

定理陳述

編輯
 

三圓定理:設三個圓 ,  ,  交於一點 ,而 ,  ,  分別是  ,   ,   的另一交點。設  的點,直線   ,直線   。那麼 ,  ,  這三點共線。

逆定理:如果 是三角形, ,  ,  三點分別在邊 ,  ,  上,那麼三角形 ,  ,  的外接圓交於一點 

完全四線形定理:如果 完全四線形,那麼三角形 ,  ,  ,  的外接圓交於一點  ,稱為密克點

 

四圓定理:設 ,  , ,  為四個圓,    的交點,    的交點,    的交點,    的交點。那麼 ,  ,  ,  四點共圓當且僅當 ,  ,  ,  四點共圓。

   

五圓定理:設 為任意五邊形,五點 ,  ,  ,  ,  分別是   ,   ,   ,   ,   的交點,那麼三角形 ,  ,  ,  ,  的外接圓的五個不在五邊形上的交點共圓。需要注意這樣構造出的圓並不穿過五個外接圓的圓心。

 

幾何中的五圓定理是指,五個順次相交的,其圓心和一個交點位於第六個圓上,將另一個交點兩兩連接並延長和圓相接,可以構成五角星[1]

逆定理:設 ,  ,  ,  ,  五個圓的圓心都在圓 上,相鄰的圓交於 上,那麼把它們不在 上的交點與比鄰同樣的點連起來,所成的五條直線相交於這五個圓上。

歷史

編輯

1838年密克劉維爾的期刊《純粹與應用數學雜誌》發表了該定理的一部份。

密克的第一條定理,是很久前已有的著名經典結果,以圓周角定理證明。

完全四線形四圓的交點現在稱為密克點,但這性質施泰納在1828年已經知道,華萊士也很可能已經知道。

五圓定理是一條更一般的定理的特殊情形。這條定理由克利福德提出及證明。

2000年12月20日,中國國家主席江澤民出席澳門回歸祖國一周年慶典活動期間,在參觀濠江中學時向該校師生出了一道求証「五點共圓」的問題[2],令問題重新引起廣泛興趣,五點共圓問題的證明後來也成為膜蛤文化的一部分。

孔涅在2002年10月的一個研討會也重提這問題。

參考資料

編輯
  1. ^ Wells D. The Penguin Dictionary of Curious and Interesting Geometry. New York: Penguin Books. 1991: 79. ISBN 0-14-011813-6. 
  2. ^ 江主席出題 濠江教師破解頁面存檔備份,存於網際網路檔案館) - 濠江中學截取自澳門日報的新聞資料

外部連結

編輯