算两次
證明兩式相等的技巧,方法是分別證明兩式數算同樣一類物件
此条目没有列出任何参考或来源。 (2014年3月26日) |
此条目需要扩充。 (2013年3月3日) |
在数学中,算两次是一个常用的证明技巧,常在证明恒等式时被提到。其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙则得到B,那么等式A = B成立。此思想虽然明显,但在实际使用时由于方法甲与方法乙通常有明显的差异,因此能把两个表面上相去甚远的式子联系起来。算两次产生过很多漂亮的证明。
组合恒等式
编辑组合数学中的算两次是一种组合证明方法。我们可以对同一个组合计数问题从两个不同的方面去观察,从而得到两个表达式,其值却相同。例如以下问题:
设 n 为给定的正整数。假如你要创造一种语言,其中的字母只有 ※ 和 ◎ 两种,而每个词语总是由 n 个字母组成,那最多可以有多少个不同的词语?
甲:由于词语中任一位置都可以自由地选择※或◎中的任何一个,所以答案是 2 × 2 × ... × 2 = 2n。
乙:如果进一步规定◎正好出现 k 次,那么符合要求的单词就只有 n 取 k 那么多个了。但k 可以是 0, 1, 2, ..., n 的任何一个,因此总计起来即为 ,其中 是组合数(n取k)。
两种方法都得到了正确的表达式,因此 。
更多例子
编辑除了以上的二项式系数和,以下这些基本的组合恒等式也可以用算两次的办法来论证(但对不同的读者来说不一定是最简单的办法):
- (来自超几何分布的等式)
- (多项式系数和)