算兩次
證明兩式相等的技巧,方法是分別證明兩式數算同樣一類物件
此條目没有列出任何参考或来源。 (2014年3月26日) |
此條目需要擴充。 (2013年3月3日) |
在數學中,算兩次是一個常用的證明技巧,常在證明恆等式時被提到。其思想是,對一個具體的量用方法甲來計算,得到的答案是A,而用方法乙則得到B,那麼等式A = B成立。此思想雖然明顯,但在實際使用時由於方法甲與方法乙通常有明顯的差異,因此能把兩個表面上相去甚遠的式子聯繫起來。算兩次產生過很多漂亮的證明。
組合恆等式
编辑组合數學中的算兩次是一种组合证明方法。我們可以對同一個組合計數問題從兩個不同的方面去觀察,從而得到兩個表達式,其值卻相同。例如以下問題:
設 n 為給定的正整數。假如你要創造一種語言,其中的字母只有 ※ 和 ◎ 兩種,而每個詞語總是由 n 個字母組成,那最多可以有多少個不同的詞語?
甲:由於詞語中任一位置都可以自由地選擇※或◎中的任何一個,所以答案是 2 × 2 × ... × 2 = 2n。
乙:如果進一步規定◎正好出現 k 次,那麼符合要求的單詞就只有 n 取 k 那麼多個了。但k 可以是 0, 1, 2, ..., n 的任何一個,因此總計起來即為 ,其中 是組合數(n取k)。
兩種方法都得到了正確的表達式,因此 。
更多例子
编辑除了以上的二項式系數和,以下這些基本的組合恆等式也可以用算兩次的辦法來論證(但對不同的讀者來說不一定是最簡單的辦法):
- (來自超幾何分布的等式)
- (多項式系數和)