实射影空间
数学中,实射影空间(real projective space),记作 RPn,是 Rn+1 中的直线组成的射影空间。它是一个 n 维紧光滑流形,也是格拉斯曼流形的一个特例。
构造
编辑与所有射影空间一样,RPn 是通过取 Rn+1 − {0} 在等价关系 x ∼ λx 对所有实数 λ ≠ 0 下的商空间。对所有 x 属于 Rn+1 − {0},总可找到一个 λ 使得t λx 的范数为 1。恰好有相差一个符号的两个这样的 λ。
故 RPn 也可通过将 Rn+1 中单位 n-维球面 Sn 的对径点等同起来得到。
进一步我们限制在 Sn 的上半球面,仅将边界赤道上的对径点等同。这说明 RPn 闭 n-维圆盘 Dn 将边界 ∂Dn = Sn−1 上的对径点等同。
低维例子
编辑称为实射影平面。
(微分同胚)是 SO(3),从而有一个群结构;覆叠映射 是一个群映射 ,这里 Spin(3)是 SO(3) 的万有覆叠李群。
拓扑
编辑n-维球面的对径映射(将 x 送到 -x)生成 Sn 上一个 Z2 群作用。上已提到,这个作用的轨道空间是 RPn。这个作用恰是一个覆叠空间作用,使 Sn 成为 RPn 的二重覆叠。因为对 n ≥ 2,Sn 是单连通的,它们在此情形也是万有覆叠。从而当 n > 1 时,RPn 的基本群是 Z2(当 n=1 基本群是 Z 因为同胚于 S1)。基本的一个生成元是连接 Sn 中一组对径点的曲线投影到 RPn 上的闭曲线。
点集拓扑
编辑n-维射影空间的一些性质:
- 1-维射影空间同胚与圆周。
- 2-维射影空间不能嵌入 R3。但可以嵌入 R4 以及浸入 R3。
- n-维射影空间事实上同胚于 R(n+1)2 中所有迹为 1 的对称 (n+1)×(n+1) 幂等线性变换组成的子流形。
- n-维射影空间是紧连通空间,基本群同构于 2 阶循环群(从 n-维球面到 n-维射影空间的商映射是 n-维射影射影空间被一个道路连通空间的二重覆叠)。
同伦群
编辑的高次同伦群恰好是 的高阶同伦群,有纤维化的同伦长正合序列得出。
确切地,这个纤维丛是
你也可以类似于复射影空间将其写成
或
低次同调群是
光滑结构
编辑实射影空间是光滑流形。在 Sn 的齐次坐标 (x1...xn+1) 中,考虑子集 Ui 使得 xi ≠ 0。每个 Ui 同胚于 Rn 中的开单位球体,且坐标转移函数是光滑的。这给出了 RPn 一个光滑结构。
CW 结构
编辑实射影空间 RPn 有一个 CW结构,在每一维有 1 个胞腔。
在 Sn 上的齐次坐标 (x1 ... xn+1) 中,坐标邻域 U1 = {(x1 ... xn+1)|x1 ≠ 0} 可与 n-维圆盘 Dn 的内部等价。当 xi = 0,我们有 RPn - 1。从而 RPn 的 n - 1 骨架是 RPn - 1,而且黏贴映射 f: Sn-1 → RPn - 1 是一个二对一映射。我们可令
归纳证明 RPn 是一个 CW 复形,在每一维有 1 个胞腔。
这些胞腔与旗流形上一样是舒伯特胞腔。这便是,取一个完全旗(称为标准旗)0 = V0 < V1 <...< Vn;则闭 k-胞腔是属于 Vk 中的直线。而开 k-胞腔(k-胞腔的内部)是 Vk\Vk-1 中的直线(属于 Vk 但不属于 Vk - 1 的直线)。
在齐次坐标(关于旗的)中,这些胞腔是
这不是一个正则 CW 结构,因黏贴映射是二对一的。但它的覆盖是球面上一个正则 CW 结构,在每一维有 2 个胞腔;事实上,这是球面上最小的正则 CW 结构。
在光滑结构的帮助下,莫尔斯函数的存在性可证明 RPn 是一个 CW 复形。在齐次坐标中,这样一个函数可为:
在每个邻域 Ui,g 有非退化奇点 (0...,1,...0),这里 1 出现于第 i 个位置,具有莫尔斯指标 i。这说明了 RPn 是一个在每一维有一个胞腔的 CW 复形。
同调
编辑与上面 CW 结构相伴的胞腔链复形在每个维数 0,...,n 恰有一个胞腔。对每个维数 k,边界映射 dk : δDk → RPk-1/RPk-2,坍塌到 Sk - 1 上的赤道然后将对径点等同。在奇数(偶数)维,度数为 0(2):
从而整同调是
可定向性
编辑可定向当且仅当 n 为奇数,上面的同调计算已经做了说明。更具体地, 上的对径映射有符号 ,所以它是保定向的当且仅当 p 是偶数。从而定向特征标是: 中的非平凡回路作为 作用在定向上,所以 可定向当且仅当 n+1 为偶数,即 n 为奇数。
重言丛
编辑几何
编辑实射影空间有一个常正数量曲率度量,由二重覆叠的标准圆球面(对极映射是一个等距)得来。
对标准圆度量,其截面曲率恒等于 1。
测度
编辑在标准圆度量中,射影空间的测度恰好是球面测度的一半。
无穷实射影空间
编辑无穷实射影空间构造为有限射影空间的正向极限或并集:
拓扑上说,这是艾伦伯格-麦克兰恩空间 (它被可缩的无穷球面 二重覆叠)并且是 BO(1),线丛的分类空间(更一般地,无穷格拉斯曼流形是向量丛的分类空间)。
系数取 Z/2 的上同调环是
这里 是第一斯蒂弗尔-惠特尼类: 它是 (其度数为 1)上的自由 -代数。