圖着色問題
此條目可參照英語維基百科相應條目來擴充。 |
圖着色問題(英語:Graph Coloring Problem,簡稱GCP),又稱着色問題,是最著名的NP-完全問題之一[1]。
給定一個無向圖,其中為頂點集合,為邊集合,圖着色問題即為將分為個顏色組,每個組形成一個獨立集,即其中沒有相鄰的頂點。其優化版本是希望獲得最小的值。[2]
圖色數
編輯有兩個相關的術語:
和圖中其他對象的關係
編輯色數和團數(clique number)
團(clique)是一個圖中兩兩相鄰的頂點構成的集合。最大團是一個圖中頂點最多的團,它的頂點數被稱為 的團數,記為 。 和 滿足如下關係:
色數和獨立數(independence number)
獨立集(independent set)是一個圖中兩兩不相鄰的頂點所構成的集合。最大獨立集是一個圖中頂點最多的獨立集,它的定點數被稱為 的獨立數,記為 。 和 滿足如下關係:
色多項式
編輯色多項式用於計算給定數量的顏色下對某圖進行塗色的可行方式數。例如,考慮有3個頂點的完全圖 ,若只使用兩種顏色, 根本無法被著色;若使用三種顏色,則有 種方式進行著色;若使用四種顏色,則有 個有效著色方案。因此,對於 ,有效著色數量的表格將從以下內容開始:
可使用之顏色數 | 1 | 2 | 3 | 4 | … |
---|---|---|---|---|---|
有效著色方法數 | 0 | 0 | 6 | 24 | … |
色多項式是一個函數,記錄將一個圖 G 進行 t-着色的方法數,記作 。正如其名所述, 是一個關於 t 的多項式。回到上面 的例子,事實上, 。
顯而易見的,色多項式 比圖色數蘊涵更多的資訊,更精確的說, 是色多項式最小的非零解正整數,即
下表給出了部分圖的色多項式:
三角形 K3 | |
完全圖 Kn | |
n個頂點的樹 | |
環 Cn | |
佩特森圖 |
重要定理
編輯參見
編輯
參考來源
編輯- ^ Michael R. Garey; D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman. 1979-01-15: 125 [2015-09-21]. ISBN 978-0716710455. (原始内容存档于2016-05-29).
- ^ Michael Molloy; Bruce Reed. Graph Colouring and the Probabilistic Method illustrated. Springer Science & Business Media. 2002: 3 [2015-09-22]. ISBN 9783540421399. (原始内容存档于2016-05-28).