图着色问题
此条目可参照英语维基百科相应条目来扩充。 |
图着色问题(英语:Graph Coloring Problem,简称GCP),又称着色问题,是最著名的NP-完全问题之一[1]。
给定一个无向图,其中为顶点集合,为边集合,图着色问题即为将分为个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的值。[2]
图色数
编辑有两个相关的术语:
和图中其他对象的关系
编辑色数和团数(clique number)
团(clique)是一个图中两两相邻的顶点构成的集合。最大团是一个图中顶点最多的团,它的顶点数被称为 的团数,记为 。 和 满足如下关系:
色数和独立数(independence number)
独立集(independent set)是一个图中两两不相邻的顶点所构成的集合。最大独立集是一个图中顶点最多的独立集,它的定点数被称为 的独立数,记为 。 和 满足如下关系:
色多项式
编辑色多项式用于计算给定数量的颜色下对某图进行涂色的可行方式数。例如,考虑有3个顶点的完全图 ,若只使用两种颜色, 根本无法被着色;若使用三种颜色,则有 种方式进行着色;若使用四种颜色,则有 个有效着色方案。因此,对于 ,有效着色数量的表格将从以下内容开始:
可使用之颜色数 | 1 | 2 | 3 | 4 | … |
---|---|---|---|---|---|
有效着色方法数 | 0 | 0 | 6 | 24 | … |
色多项式是一个函数,记录将一个图 G 进行 t-着色的方法数,记作 。正如其名所述, 是一个关于 t 的多项式。回到上面 的例子,事实上, 。
显而易见的,色多项式 比图色数蕴涵更多的资讯,更精确的说, 是色多项式最小的非零解正整数,即
下表给出了部分图的色多项式:
三角形 K3 | |
完全图 Kn | |
n个顶点的树 | |
环 Cn | |
佩特森图 |
重要定理
编辑参见
编辑
参考来源
编辑- ^ Michael R. Garey; D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman. 1979-01-15: 125 [2015-09-21]. ISBN 978-0716710455. (原始内容存档于2016-05-29).
- ^ Michael Molloy; Bruce Reed. Graph Colouring and the Probabilistic Method illustrated. Springer Science & Business Media. 2002: 3 [2015-09-22]. ISBN 9783540421399. (原始内容存档于2016-05-28).