File:3bodyproblem.gif
3bodyproblem.gif (780 × 246像素,文件大小:1.56 MB,MIME类型:image/gif、循环、201帧)
摘要
描述3bodyproblem.gif |
English: A system of 3 bodies interacting gravitationally is (famously) chaotic. A system of 3 bodies interacting elastically isn't. Time in this animations is increasing from top right to down left along the diagonal, to show the evolution of the two systems. |
日期 | |
来源 | https://twitter.com/j_bertolotti/status/1044947721696808961 |
作者 | Jacopo Bertolotti |
授权 (二次使用本文件) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 11.0 code
(*Staring positions in a triangle*) x10 = -1; y10 = -1; x20 = 1; y20 = -1; x30 = 1; y30 = 1; (*Initial total momentum is zero, so the center of mass does not \ drift away*) vx10 = 0.2; vy10 = 0; vx20 = -0.1; vy20 = 0; vx30 = 0; vy30 = -0.1; (*max time the system evolves (in arbitrary units)*) T = 40; (*All three bodies have the same mass*) m1 = 1; m2 = 1; m3 = 1; (*Setting up of the equations copied from \ http://demonstrations.wolfram.com/PlanarThreeBodyProblem/ There are more elegant and compact ways of doing this, but I wasn't \ interested in optimizing the code.*) nds = NDSolve[ {x1'[t] == vx1[t], y1'[t] == vy1[t], x2'[t] == vx2[t], y2'[t] == vy2[t], x3'[t] == vx3[t], y3'[t] == vy3[t], m1 vx1'[t] == -(( m1 m2 (x1[t] - x2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^(3/2)) - ( m1 m3 (x1[t] - x3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2), m1 vy1'[t] == -(( m1 m2 (y1[t] - y2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^(3/2)) - ( m1 m3 (y1[t] - y3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2), m2 vx2'[t] == ( m1 m2 (x1[t] - x2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^( 3/2) - (m2 m3 (x2[t] - x3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), m2 vy2'[t] == ( m1 m2 (y1[t] - y2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^( 3/2) - ( m2 m3 (y2[t] - y3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^( 3/2), m3 vx3'[t] == ( m1 m3 (x1[t] - x3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2) + (m2 m3 (x2[t] - x3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), m3 vy3'[t] == ( m1 m3 (y1[t] - y3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2) + (m2 m3 (y2[t] - y3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), x1[0] == x10, y1[0] == y10, x2[0] == x20, y2[0] == y20, x3[0] == x30, y3[0] == y30, vx1[0] == vx10, vy1[0] == vy10, vx2[0] == vx20, vy2[0] == vy20, vx3[0] == vx30, vy3[0] == vy30}, {x1, x2, x3, y1, y2, y3, vx1, vx2, vx3, vy1, vy2, vy3}, {t, 0, T}]; funsToPlot = {{x1[t], y1[t]}, {x2[t], y2[t]}, {x3[t], y3[t]}} /. nds[[1]]; evo = Table[funsToPlot /. {t -> j}, {t, 0, T, 0.01}]; dim = Dimensions[evo][[1]]; (*For the elastic force case I used a Verlet integration, as this \ case is numerically very stable.*) np = 3; k0 = 1; (*Same initial condition as the gravitational case*) pos = {{x10, y10}, {x20, y20}, {x30, y30}}; v0 = {{vx10, vy10}, {vx20, vy20}, {vx30, vy30}}; acc = Table[ Sum[If[j == k, 0, -k0 (pos[[j]] - pos[[k]])], {k, 1, np}], {j, 1, np}]; dt = 0.005; posold = pos; pos = posold + v0 dt + acc/2 dt^2; range = 5; evoe = Reap[Do[ acc = Table[Sum[ If[j == k, 0, -k0 (pos[[j]] - pos[[k]])], {k, 1, np}], {j, 1, np}]; posoldold = posold; posold = pos; pos = 2 posold - posoldold + acc dt^2; Sow[pos]; , dim];][[2, 1]]; plots = Table[ GraphicsRow[{ Show[ ListPlot[{evo[[All, 1]][[1 ;; j]], evo[[All, 2]][[1 ;; j]], evo[[All, 3]][[1 ;; j]]}, PlotStyle -> {Purple, Orange, Cyan}, PlotRange -> {{-range, range}, {-range, range}}, Joined -> True, Axes -> False, PlotLabel -> "Gravitational 3-body problem", LabelStyle -> {Bold, Black}], Graphics[{PointSize[0.03], Purple, Point[evo[[All, 1]][[j]]], Orange, Point[evo[[All, 2]][[j]]], Cyan, Point[evo[[All, 3]][[j]]]} , PlotRange -> {{-range, range}, {-range, range}}], ImageSize -> Medium ] , Show[ ListPlot[{evoe[[All, 1]][[1 ;; j]], evoe[[All, 2]][[1 ;; j]], evoe[[All, 3]][[1 ;; j]]}, PlotStyle -> {Purple, Orange, Cyan}, PlotRange -> {{-range, range}, {-range, range}}, Joined -> True, Axes -> False, PlotLabel -> "Elastic 3-body problem", LabelStyle -> {Bold, Black}], Graphics[{PointSize[0.03], Purple, Point[evoe[[All, 1]][[j]]], Orange, Point[evoe[[All, 2]][[j]]], Cyan, Point[evoe[[All, 3]][[j]]]} , PlotRange -> {{-range, range}, {-range, range}}], ImageSize -> Medium ] }], {j, 1, dim, 20}]; ListAnimate[plots]
许可协议
我,本作品著作权人,特此采用以下许可协议发表本作品:
本作品采用知识共享CC0 1.0 通用公有领域贡献许可协议授权。 | |
采用本宣告发表本作品的人,已在法律允许的范围内,通过在全世界放弃其对本作品拥有的著作权法规定的所有权利(包括所有相关权利),将本作品贡献至公有领域。您可以复制、修改、传播和表演本作品,将其用于商业目的,无需要求授权。
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
管理员或受信用户Ronhjones确认本图片在2018年10月19日可在下列站点找到并符合所选许可证:
https://twitter.com/j_bertolotti/status/1044947721696808961 |
此文件中描述的项目
描繪內容
26 9 2018
image/gif
1,634,680 字节
246 像素
780 像素
文件历史
点击某个日期/时间查看对应时刻的文件。
日期/时间 | 缩略图 | 大小 | 用户 | 备注 | |
---|---|---|---|---|---|
当前 | 2018年9月26日 (三) 14:03 | 780 × 246(1.56 MB) | Berto | User created page with UploadWizard |
文件用途
以下页面使用本文件:
全域文件用途
以下其他wiki使用此文件:
- en.wiki.x.io上的用途
- eo.wiki.x.io上的用途
- pt.wiki.x.io上的用途
- ro.wiki.x.io上的用途
- ru.wiki.x.io上的用途
- uz.wiki.x.io上的用途
- vi.wiki.x.io上的用途
元数据
此文件中包含有扩展的信息。这些信息可能是由数码相机或扫描仪在创建或数字化过程中所添加。
如果此文件的源文件已经被修改,一些信息在修改后的文件中将不能完全反映出来。
GIF文件备注 | Created with the Wolfram Language : www.wolfram.com |
---|