ARIMA模型
此條目没有列出任何参考或来源。 (2022年3月10日) |
此條目需要精通或熟悉統計學的编者参与及协助编辑。 |
ARIMA模型(英語:Autoregressive Integrated Moving Average model),差分整合移動平均自我迴歸模型,又稱整合移动平均自我迴歸模型(移動也可稱作滑動),為时间序列预测分析方法之一。ARIMA(p,d,q)中,AR為自我迴歸,p为自回归项数;MA为移动平均,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。「差分」一詞雖未出現在ARIMA的英文名稱中,卻是使時間序列得以平穩關鍵的步驟。
ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。ARIMA(p,d,q)模型可以表示为:
其中L 是滞后算子(Lag operator),
模型特点
编辑- 不直接考虑其他相关随机变量的变化。
ARIMA模型运用的流程
编辑相關條目
编辑这是一篇與統計學相關的小作品。您可以通过编辑或修订扩充其内容。 |