電子對湮滅是指電子
e
正电子
e+
(電子的反粒子)碰撞後湮滅,產生伽马射线或是其他更高能量粒子的過程:

自然發生的電子-正电子對湮沒
電子-正电子對湮沒的费曼图

e
 + 
e+
 → 
γ
 + 
γ

此過程滿足以下的守恆定律

和其他有帶電的粒子一樣,電子和正电子也可以彼此影響(例如彈性散射英语elastic scattering)而不湮滅。

低能量的情形

编辑

最終狀態只有幾種可能,機率最大的是產生二個或多個伽马射线的光子,由於動量守恆及能量守恆的限制,不允許產生單一光子。(不過若電子是緊密被原子束縛,就有可能只產生單一光子[1]。)最常見的是產生二個光子,每個光子的能量都等於電子或是正电子的不变质量511 keV[2]。一般會選用动量中心系参考系,使得湮滅前的總動量為零,因此湮滅後的伽马射线會往相反方向發射。有時也會產生三個光子,因為在某些角動量的狀態下,需要維持电荷宇称的守恆[3]。以機率上來看有可能產生任意數量的光子,但每多產生一個光子,其機率都再低一些,因為其過程更加複雜,機率幅也越低。

由於中微子的質量較電子小,因此有可能在湮滅後產生中微子-反中微子對,但其可能性極低。只要某個粒子和電子一起參與某種基本相互作用,又沒有受到守恆定律的限制,都可能在電子對湮滅後產生此粒子,只是尚未找到其他的粒子有這樣的特性。

高能量的情形

编辑

若電子或正子有相當的動能,會可能產生其他較重的的粒子(像D介子),也有可能會產生光子及其他較輕的粒子,不過要更高的能量下才會發生。

若能量接近甚至超過弱相互作用介子(W及Z玻色子)的質量,弱相互作用力的強度接近電磁力的強度[3],因此比較容易產生像中微子等只參與弱交互作用的粒子。

利用粒子加速器進行電子對湮滅,所產生的最重粒子對是
W+

W
粒子對,所產生的單一粒子是Z玻色子。建造国际直线对撞机英语International Linear Collider的目的也是想用此方式產生希格斯玻色子

用途

编辑

電子對湮滅是正電子發射計算機斷層掃描(PET)及正子湮滅能譜學英语positron annihilation spectroscopy(PAS)的物理基礎。電子對湮滅也可以用來量測金屬费米面能带结构

逆過程

编辑

電子對湮滅的逆過程是電子-正電子產生,是一種成對產生,由雙光子物理學的一部份。

相關條目

编辑

參考資料

编辑
  1. ^ L. Sodickson, W. Bowman, J. Stephenson, R. Weinstein. Single-Quantum Annihilation of Positrons. Physical Review. 1970, 124: 1851. Bibcode:1961PhRv..124.1851S. doi:10.1103/PhysRev.124.1851. 
  2. ^ W.B. Atwood, P.F. Michelson, S.Ritz. Una Ventana Abierta a los Confines del Universo. Investigación y Ciencia. 2008, 377: 24–31.  (西班牙文)
  3. ^ 3.0 3.1 D.J. Griffiths. Introduction to Elementary Particles. John Wiley & Sons. 1987. ISBN 0-471-60386-4.