白銀分割率是一個無理數的數學常數,符號δS,定義為以下的數值:
白銀比例白銀比例 |
---|
|
白銀矩形 |
|
名稱 | 白銀比 白銀分割比 |
---|
|
種類 | 無理數 |
---|
符號 | |
---|
位數數列編號 | A014176 |
---|
|
連分數 | |
---|
以此為根的多項式或函數 | |
---|
|
值 | 2.41421356... |
---|
代數形式 | |
---|
|
二进制 | 10.011010100000100111100110… |
---|
十进制 | 2.414213562373095048801688… |
---|
十六进制 | 2.6A09E667F3BCC908B2FB1366… |
---|
|
|
又稱白銀比例、白銀分割,白銀比例的命名和黃金比例類似,斐波那契数列後一項和前一項的比值會趨近黃金比例,而佩爾數数列後一項和前一項的比值會趨近白銀比例。白銀比例和2的算術平方根、三角平方數、佩爾數及正八邊形都有關係,希臘時期的數學家就已開始研究白銀分割率,但當時沒有為此一數值命名。
若二個數和的比值等於白銀比,則二數可以滿足以下的方程:
白銀比例可以用連續分數[2; 2, 2, 2, ...]表示
連續分數的漸近分數即為連續二項佩爾數的比值。這些分數可提供白銀分割率的準確丟番圖逼近,就像連續二項斐波那契数列的比值可作為黃金比例的丟番圖逼近一様。白银比例即第2贵金属分割。
白銀比例的共軛數 其絕對值小於1,因此白銀比例為皮索特-維賈亞拉加文數(PV數),且白銀比例是第二小的二次PV數(最小的是黃金比例)。白銀分割的乘幂距最接近整數的距離為 ,會趨近於0。
以下列出白銀比例的幾個乘幂:
-
-
-
-
-
乘幂的遞迴關係式如下:
-
其中
-
因此可用上式得到以下乘幂的值:
-
利用 及 為初始條件,可以利用求解以下的遞迴關係式得到 的解:
-
可以表示為以下的式子
-
白银比例和 的三角函數數值有關:
-
-
-
-
邊長為a的正八邊形面積可以用下式表示:
-