希尔伯特基定理
定理
(重定向自希尔伯特基底定理)
定理陈述
编辑设 为一个环,记 为 上以 为变量的的多项式组成的环。大卫·希尔伯特证明了只要 不是“太大”——即 为诺特环——那么 也具有相同性质。形式上,
希尔伯特基定理. 如果 是诺特环,那么 也是诺特环。
推论. 如果 是诺特环,那么 也是诺特环。
定理可以如下翻译成代数几何的语言:域上的每个代数集都可以描述成有限多个多项式方程的公共根的集合。 Hilbert (1890) 在他对不变量环的有限生成的证明中,证明了希尔伯特基定理(在域上的多项式环这一特例)。
希尔伯特应用数学归纳法给出了一个创新的反证:他的证明并没有提供对于任一理想生成对应的有限多个多项式方程的算法;相反,它只说明了这些多项式方程存在。通过Gröbner基的方法,我们可以确定给定理想的基多项式。。
证明
编辑证明1
编辑证明2
编辑应用
编辑设 为诺特交换环。希尔伯特基定理有下列直接推论:
Mizar系统
编辑Mizar计划已经完全形式化并自动检查完毕希尔伯特基定理的证明;见HILBASIS file (页面存档备份,存于互联网档案馆)。
参考
编辑- Cox, Little, and O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, 1997.
- Hilbert, David, Ueber die Theorie der algebraischen Formen, Mathematische Annalen, 1890, 36 (4): 473–534, ISSN 0025-5831, doi:10.1007/BF01208503