太陽能發電(德語:Solarstrom,英語:Solar power)把陽光轉換成電能,可直接使用太陽能光伏(PV),或間接使用聚光太陽能熱發電(CSP)。聚光太陽能熱發電系統會使用透鏡或反射鏡和跟踪系統將大面積的陽光聚焦成一個小束,並利用光電效應將光伏光轉換成電流。[2]

2016年全球電力來源
煤天然氣水力核能石油地熱太陽能光熱太陽能光伏海洋能風力生質能焚化爐
  •   煤: 9,594,341 GWh (38.3%)
  •   天然氣: 5,793,896 GWh (23.1%)
  •   水力: 4,170,035 GWh (16.7%)
  •   核能: 2,605,985 GWh (10.4%)
  •   石油: 931,351 GWh (3.7%)
  •   地熱: 81,656 GWh (0.3%)
  •   太陽能光熱: 10,474 GWh (0.0%)
  •   太陽能光伏: 328,038 GWh (1.3%)
  •   海洋能: 1,026 GWh (0.0%)
  •   風力: 957,694 GWh (3.8%)
  •   生質能: 462,167 GWh (1.8%)
  •   垃圾焚化: 108,407 GWh (0.4%)
2016年全球總發電量:

25,081,588GWh

資料來源:IEA[1]
美國內華達内利斯空军基地發電廠
PS10集中太陽光到中央塔上日光反射裝置。

第一次商業集中開發太陽能發電廠發生在20世紀80年代。位於美國加利福尼亞州莫哈韋沙漠的太陽能發電廠安裝在世界上最大的聚光太陽能熱發電,354百萬瓦的太陽能發電系統。

在2014年,太陽能已經在主要市場達到電網平價英语Grid parity,截至2021年,太陽能產生的電力佔世界電力4%,而2015年簽署遏阻氣候變化的《巴黎協定》時這一比例為1%。[3] 除了陸上風能,最便宜的均化能源成本是公用事業規模太陽能。[4]

應用

编辑

太陽能發電是把陽光轉換成能。陽光可以直接轉換成電力使用太陽能光伏,或間接使用聚光太陽能熱發電,它通常集中太陽的能量來燒開水,然後用來提供電源。其他技術也存在,如斯特林發動機使用斯特林循環​​發動機供電。[5]太陽光發電最初仍然是用於小型和中型應用,由光伏電池(太陽能電池) 供電,把太陽能收集和轉換成電能。[6]

聚光太陽能發電

编辑

聚光太陽能發電系統是使用透鏡反射鏡,加上跟踪系統,利用光學原理將大面積的陽光聚焦到一個相對細小的集光區中。然後將濃縮的熱用作常規電站的熱源。[7]在所有這些系統中的工作流體被聚光的太陽光加熱,然後將其用於發電或能量存儲。儲熱有效地允許最多24小時的發電。[8]

全球光熱發電 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
裝置量(MW)[9] 412 479 535 765 1,269 1,710 2,573 3,841 4,498 4,749 4,851 4,951
發電量(GWh)[10] 551 685 898 924 1,646 2,862 4,765 5,867 8,428 9,418

光伏技術

编辑
 
德國的太陽能電廠

太陽能電池或光伏電池是一個設備,使用的光電效應將光轉換成電流。在光电效应中,单个光子的能量仅能够被单个电子吸收,因此,在光照条件一定的情况下,太阳能电池可以看作是一个恒流源。

太陽能光伏發電系統

编辑

太陽能電池產生的直流電電源與太陽光的強度的波動。對於實際應用,這通常需要轉換到目標所需的電壓或交流電流,通過使用逆變器。多個太陽能電池模塊的內部連接。模塊被連接在一起,以形成陣列,然後連接到一個逆變器,在所需的電壓,產生的功率,在交流電流時所需的頻率/相位。

全球太陽能光伏發電統計 [11]
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
裝置量(MW) 651 901 1,211 1,746 2,799 4,244 5,701 7,998 14,395 22,473
發電量(GWh) 1,125 1,409 1,775 2,269 2,986 4,177 5,732 7,771 12,622 20,965
2010 2011 2012 2013 2014 2015 2016 2017 2018
裝置量(MW) 39,532 70,609 101,957 140,351 178,315 226,661 298,248 392,263 487,829
發電量(GWh) 33,683 65,035 100,764 139,058 197,910 260,739 328,378 453,517 584,630
佔全球發電量比 0.16% 0.29% 0.44% 0.59% 0.83% 1.07% 1.32% 1.77% 2.20%
全球太陽能光伏裝置量前十國(2017年)[9]
國家 太陽能光伏裝置量

百萬瓦(MW)

  中國 130,632
  日本 48,600
  德国 42,394
  美国 41,131
  義大利 19,692
  印度 19,047
  英国 12,791
  法國 8,195
  澳大利亞 6,413
  韩国 5,602
各種發電方法產生的二氧化碳排放量
發電方法 簡述 每單位電量所產生的二氧化碳
(g CO2/kWhe)(百一分段價)
水力發電 假設利用水塘,不含水壩建設 4
風力發電廠 位於低成本陸地的情境,不含海上型 12
核電 以普遍的第二代核反應堆計算
不含更新型科技
16
生物燃料 18
聚光太陽能熱發電 22
地熱發電 45
太陽能電池 多晶硅太陽能電池
生產過程的碳排放
46
燃氣發電 加裝燃氣渦輪
聯合廢熱回收蒸汽發生器
469
燃煤發電 1001
備註:這些數據的原始來源是由1989~2010年間的各種相關研究報告整理而成[12]

參見

编辑

註釋

编辑
  1. ^ IEA: www.iea.org/statistics/statisticssearch/. [2020-05-02]. (原始内容存档于2019-01-29). 
  2. ^ Energy Sources: Solar. Department of Energy. [19 April 2011]. (原始内容存档于2011-08-03). 
  3. ^ Global Electricity Review 2022. Ember. 2022-03-29 [2022-04-03]. (原始内容存档于2022-04-02) (美国英语). 
  4. ^ Levelized Cost Of Energy, Levelized Cost Of Storage, and Levelized Cost Of Hydrogen. Lazard.com. [2022-04-03]. (原始内容存档于2023-03-06) (英语). 
  5. ^ Sind Brennstoffzellen umweltfreundlich? Ja, aber.... [2016-05-27]. (原始内容存档于2016-09-21). 
  6. ^ Solarleuchten ohne Stromanschluss: Vor- und Nachteile im Überblick. [2016-05-27]. (原始内容存档于2016-05-31). 
  7. ^ Martin and Goswami (2005), p. 45
  8. ^ Spanish CSP Plant with Storage Produces Electricity for 24 Hours Straight. [2013-08-18]. (原始内容存档于2012-10-12). 
  9. ^ 9.0 9.1 International Renewable Energy Agency: Renewable Capacity Statistics 2018 PDF页面存档备份,存于互联网档案馆
  10. ^ International Energy Agency: www.iea.org/statistics/statisticssearch/report/?country=WORLD&product=electricityandheat&year=2015页面存档备份,存于互联网档案馆
  11. ^ BP: Statistical Review of World Energy 2019页面存档备份,存于互联网档案馆
  12. ^ http://srren.ipcc-wg3.de/report/IPCC_SRREN_Annex_II.pdf页面存档备份,存于互联网档案馆) see page 10 Moomaw, W., P. Burgherr, G. Heath, M. Lenzen, J. Nyboer, A. Verbruggen, 2011: Annex II: Methodology. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation.