大津算法

图像二值化算法

计算机视觉图像处理领域,大津二值化法(Otsu's method)是由大津展之英语Nobuyuki Otsu命名的一种用于自动图像阈值分割的方法。[1] 该方法用于对基于聚类的图像进行二值化,即将一个灰度图像转化为二值图像。算法假定图像根据双模直方图(前景像素和背景像素)包含两类像素,并计算出能将这两类像素分开的最佳阈值,使得类内方差最小,或等效地,类间方差最大。[2] 因此,大津二值化法是一种一维离散的費舍爾判别分析的类似方法,与Jenks优化方法英语Jenks natural breaks optimization相关,并且等同于在强度直方图上执行的全局最优k-means算法。 原始论文中还描述了多级阈值扩展方法,[3] 并且后来提出了计算效率高的实现方法。[4][5]

使用大津算法二值化的图像
原图

方法

编辑

在大津算法中,我们穷举搜索能使类内方差最小的阈值,定义为两个类的方差的加权和:

 

权重   是被阈值   分开的两个类的概率,而   是这两个类的方差。

大津证明了最小化类内方差和最大化类间方差是相同的:[2]

 

用类概率   和类均值   来表示。

类概率   用阈值为   的直方图计算:

 

而类均值   为:

 

其中   为第   个直方图面元中心的值。 同样的,你可以对大于   的面元求出右侧直方图的   

类概率和类均值可以迭代计算。这个想法会产生一个有效的算法。

大津算法得出了0:1范围上的一个阈值。这个阈值用于图像中出现的像素强度的动态范围。例如,若图像只包含155到255之间的像素强度,大津阈值0.75会映射到灰度阈值230(而不是192,因为图像包含的像素不是0–255全范围的)。常见的摄影图像往往包含全范围的像素强度,就会让这一点有争论,但其他应用会对这点区别很敏感。[6]

算法

编辑
  1. 计算每个强度级的直方图和概率
  2. 设置    的初始值
  3. 遍历所有可能的阈值   最大强度
    1. 更新   
    2. 计算  
  4. 所需的阈值对应于最大的  
  5. 你可以计算两个最大值(和两个对应的)。  是最大值而   是更大的或相等的最大值
  6. 所需的阈值 =  

JavaScript实现

编辑

注:输入参数total是给定图像中的像素数。输入参数histogram是灰度图像不同灰度级(典型的8位图像)的256元直方图。此函数输出图像的阈值。

function otsu(histogram, total) {
    var sum = 0;
    for (var i = 1; i < 256; ++i)
        sum += i * histogram[i];
    var sumB = 0;
    var wB = 0;
    var wF = 0;
    var mB;
    var mF;
    var max = 0.0;
    var between = 0.0;
    var threshold1 = 0.0;
    var threshold2 = 0.0;
    for (var i = 0; i < 256; ++i) {
        wB += histogram[i];
        if (wB == 0)
            continue;
        wF = total - wB;
        if (wF == 0)
            break;
        sumB += i * histogram[i];
        mB = sumB / wB;
        mF = (sum - sumB) / wF;
        between = wB * wF * (mB - mF) * (mB - mF);
        if ( between >= max ) {
            threshold1 = i;
            if ( between > max ) {
                threshold2 = i;
            }
            max = between;            
        }
    }
    return ( threshold1 + threshold2 ) / 2.0;
}

C实现

编辑
unsigned char otsu_threshold( int* histogram, int pixel_total )
{
    unsigned int sumB = 0;
    unsigned int sum1 = 0;
    float wB = 0.0f;
    float wF = 0.0f;
    float mF = 0.0f;
    float max_var = 0.0f;
    float inter_var = 0.0f;
    unsigned char threshold = 0;
    unsigned short index_histo = 0;

    for ( index_histo = 1; index_histo < 256; ++index_histo )
    {
        sum1 += index_histo * histogram[ index_histo ];
    }

    for (index_histo = 1; index_histo < 256; ++index_histo)
    {
        wB = wB + histogram[ index_histo ];
        wF = pixel_total - wB;
        if ( wB == 0 || wF == 0 )
        {
            continue;
        }
        sumB = sumB + index_histo * histogram[ index_histo ];
        mF = ( sum1 - sumB ) / wF;
        inter_var = wB * wF * ( ( sumB / wB ) - mF ) * ( ( sumB / wB ) - mF );
        if ( inter_var >= max_var )
        {
            threshold = index_histo;
            max_var = inter_var;
        }
    }

    return threshold;
}

MATLAB实现

编辑

total为给定图像中的像素数。 histogramCounts为灰度图像不同灰度级(典型的8位图像)的256元直方图。 level为图像的阈值(double)。

function level = otsu(histogramCounts, total)
%% OTSU automatic thresholding method
sumB = 0;
wB = 0;
maximum = 0.0;
threshold1 = 0.0;
threshold2 = 0.0;
sum1 = sum((1:256).*histogramCounts.'); % the above code is replace with this single line
for ii=1:256
    wB = wB + histogramCounts(ii);
    if (wB == 0)
        continue;
    end
    wF = total - wB;
    if (wF == 0)
        break;
    end
    sumB = sumB +  ii * histogramCounts(ii);
    mB = sumB / wB;
    mF = (sum1 - sumB) / wF;
    between = wB * wF * (mB - mF) * (mB - mF);
    if ( between >= maximum )
        threshold1 = ii;
        if ( between > maximum )
            threshold2 = ii;
        end
        maximum = between;
    end
end
level = (threshold1 + threshold2 )/(2);
end

另一种方法是用向量化方法(可以很容易地转换为便于GPU处理Python矩阵数组版本)

function  [threshold_otsu] = Thredsholding_Otsu( Image)
%Intuition:
%(1)pixels are divided into two groups
%(2)pixels within each group are very similar to each other 
%   Parameters:
%   t : threshold 
%   r : pixel value ranging from 1 to 255
%   q_L, q_H : the number of lower and higher group respectively
%   sigma : group variance
%   miu : group mean
%   Author: Lei Wang
%   Date  : 22/09/2013
%   References : Wikepedia, 
%   for multi children Otsu method, please visit : https://drive.google.com/file/d/0BxbR2jt9XyxteF9fZ0NDQ0dKQkU/view?usp=sharing
%   This is my original work

nbins = 256;
counts = imhist(Image,nbins);
p = counts / sum(counts);

for t = 1 : nbins
   q_L = sum(p(1 : t));
   q_H = sum(p(t + 1 : end));
   miu_L = sum(p(1 : t) .* (1 : t)') / q_L;
   miu_H = sum(p(t + 1 : end) .* (t + 1 : nbins)') / q_H;
   sigma_b(t) = q_L * q_H * (miu_L - miu_H)^2;
end

[~,threshold_otsu] = max(sigma_b(:));
end

该实现有一点点冗余的计算。但由于大津算法快速,这个实现版本是可以接受,并且易于理解的。因为在一些环境中,如果使用向量化的形式,可以更快地运算循环。大津二值化法使用架构最小的堆-孩子标签(heap-children label)可以很容易地转变成多线程的方法。

参考文献

编辑
  1. ^ M. Sezgin and B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging. 2004, 13 (1): 146–165. doi:10.1117/1.1631315. 
  2. ^ 2.0 2.1 Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 1979, 9 (1): 62–66. doi:10.1109/TSMC.1979.4310076. 
  3. ^ Ping-Sung Liao and Tse-Sheng Chen and Pau-Choo Chung. A Fast Algorithm for Multilevel Thresholding. J. Inf. Sci. Eng. 2001, 17 (5): 713–727. 
  4. ^ Liao, Ping-Sung. A fast algorithm for multilevel thresholding (PDF). J. Inf. Sci. Eng. 2001, 17 (5): 713–727. S2CID 9609430. doi:10.6688/JISE.2001.17.5.1. (原始内容 (PDF)存档于2019-06-24). 
  5. ^ Huang, Deng-Yuan. Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recognition Letters. 2009, 30 (3): 275–284. Bibcode:2009PaReL..30..275H. doi:10.1016/j.patrec.2008.10.003. 
  6. ^ Q&A Forum. Stack Overflow. [2015-10-20]. (原始内容存档于2015-11-14). 

外部链接

编辑